Frescalo

Romain Goury | July 29, 2025

Table of Contents

  1. Description & principle
  2. Reference articles
  3. Packages
  4. Assessment table

Description & principle

Frescalo is a method developed by Hill (2012), that aims to consider and correct for spatio-temporal biases from unstructured (i.e., opportunistic) data. The method provides estimated of temporal trends when there has been enough sampling to at least estimate species’ local relative frequencies accurately. The Frescalo algorithm is divided in two main steps such as a spatial and temporal correction (see Fig. 1). The first step aims to correct for variation in sampling effort across neighbourhoods for the overall time period being considered, while the second step relies in correcting for time-period specific variations in recording effort within and across sites.

Figure 1 An overview of the Frescalo method (Goury et al., 2025)

Further online resources

Reference articles

Method

  • Local frequency as a key to interpreting species occurrence data when recording effort is not known (Hill, 2012)
  • A practical guide to species trend detection with unstructured data using local frequency scaling (Frescalo) (Goury et al., 2025)

Research applications

With RS data in Ecology / Biodiversity

Without RS data (Ecology domain)

Packages

Python

No packages in python are existing

R

Code Cells

Assessment table

CategoryCriteriaAssessment
OutcomeObjectiveEffect estimation, Detection
 EstimandInapplicable
 ValidityInapplicable
Data compatibilityTypeSpatial only (cross-sectional), Panel data (many samples)
 Required TS lengthHandles ≤ 10, ≥ 10, ≥ 100
 Handles few samplesNo
 Handles huge datasets (n)Yes
 Handles missing dataYes
 RS-data provenFew applications
AssumptionsFunctional formInapplicable
 No unobserved confoundersInapplicable
 No interferenceInapplicable
 Well-defined treatmentsInapplicable
 Common support (positivity)Inapplicable
 Causal Markov ConditionInapplicable
 FaithfulnessInapplicable
 IDDInapplicable
 Model specific assumptionUnevaluated
Model propertiesRequires explicit processesYes
 Exposure typeContinuous / Time-varying
 Number of variablesHigh-dimensional (p≫n)
 Handles lag effectsInapplicable
 Propagates uncertaintyInherent capacity
 Parametric natureInapplicable
PackagesLanguageR
 UsageSparse documentation

References

  1. Hill, M. O. (2012). Local Frequency as a Key to Interpreting Species Occurrence Data When Recording Effort Is Not Known. Methods in Ecology and Evolution, 3, 195–205. https://doi.org/10.1111/j.2041-210X.2011.00146.x
  2. Goury, R., Bowler, D. E., Harrower, C., Münkemüller, T., Vallet, J., Yearsley, J., Thuiller, W., & Pescott, O. L. (2025). A Practical Guide to Species Trend Detection with Unstructured Data Using Local Frequency Scaling (Frescalo). Submitted to Ecography. https://ecoevorxiv.org/repository/view/9467/
  3. Montràs-Janer, T., Suggitt, A. J., Fox, R., Jönsson, M., Martay, B., Roy, D. B., Walker, K. J., & Auffret, A. G. (2024). Anthropogenic Climate and Land-Use Change Drive Short- and Long-Term Biodiversity Shifts across Taxa. Nature Ecology & Evolution, 8, 739–751. https://doi.org/10.1038/s41559-024-02326-7
  4. Auffret, A. G., & Svenning, J.-C. (2022). Climate Warming Has Compounded Plant Responses to Habitat Conversion in Northern Europe. Nature Communications, 13, 7818. https://doi.org/10.1038/s41467-022-35516-7
  5. Eichenberg, D., Bowler, D. E., Bonn, A., Bruelheide, H., Grescho, V., Harter, D., Jandt, U., May, R., Winter, M., & Jansen, F. (2021). Widespread Decline in Central European Plant Diversity across Six Decades. Global Change Biology, 27, 1097–1110. https://doi.org/10.1111/gcb.15447
  6. Fox, R., Oliver, T. H., Harrower, C., Parsons, M. S., Thomas, C. D., & Roy, D. B. (2014). Long-Term Changes to the Frequency of Occurrence of British Moths Are Consistent with Opposing and Synergistic Effects of Climate and Land-Use Changes. Journal of Applied Ecology, 51, 949–957. https://doi.org/10.1111/1365-2664.12256
  7. Society, B. B. (2014). Atlas of British and Irish Bryophytes. In British Bryological Society. https://www.britishbryologicalsociety.org.uk/publications/atlas-of-british-and-irish-bryophytes/
  8. Suggitt, A. J., Wheatley, C. J., Aucott, P., Beale, C. M., Fox, R., Hill, J. K., Isaac, N. J. B., Martay, B., Southall, H., Thomas, C. D., Walker, K. J., & Auffret, A. G. (2023). Linking Climate Warming and Land Conversion to Species’ Range Changes across Great Britain. Nature Communications, 14, 6759. https://doi.org/10.1038/s41467-023-42475-0
  9. White, H. J., Gaul, W., Sadykova, D., León-Sánchez, L., Caplat, P., Emmerson, M. C., & Yearsley, J. M. (2019). Land Cover Drives Large Scale Productivity-Diversity Relationships in Irish Vascular Plants. PeerJ, 7, e7035. https://doi.org/10.7717/peerj.7035
  10. Pescott, O. L., Humphrey, T. A., Stroh, P. A., & Walker, K. J. (2019). Temporal Changes in Distributions and the Species Atlas: How Can British and Irish Plant Data Shoulder the Inferential Burden? British & Irish Botany, 1, 250–282. https://doi.org/10.33928/bib.2019.01.250
  11. Redhead, J. W., Woodcock, B. A., Pocock, M. J. O., Pywell, R. F., Vanbergen, A. J., & Oliver, T. H. (2018). Potential Landscape-Scale Pollinator Networks across Great Britain: Structure, Stability and Influence of Agricultural Land Cover. Ecology Letters, 21, 1821–1832. https://doi.org/10.1111/ele.13157
  12. Dyer, R. J., Gillings, S., Pywell, R. F., Fox, R., Roy, D. B., & Oliver, T. H. (2017). Developing a Biodiversity-Based Indicator for Large-Scale Environmental Assessment: A Case Study of Proposed Shale Gas Extraction Sites in Britain. Journal of Applied Ecology, 54, 872–882. https://doi.org/10.1111/1365-2664.12784
  13. Goury, R., Thuiller, W., Abdulhak, S., Pache, G., Van Es, J., Bowler, D. E., Renaud, J., Violle, C., & Münkemüller, T. (2025). Recent vegetation shifts in the French Alps with winners outnumbering losers. In Submitted to Journal of Ecology.