Method name

Mrs. Young | April 29, 2025

Table of Contents

  1. Description & principle
  2. Reference articles
  3. R / Python Packages
  4. Assessment table

Description & principle

A clear, technical yet accessible explanation of the method, its core principle(s).

Major variants

optional

If the method has variants that seem important, either already widespread or promising and well documented.

Further online resources

References to useful online resources to get started, e.g. explanation blogs

Reference articles

Method

  • One or a few key academic references that introduce or formalize the method.

Research applications

With RS data in Ecology / Biodiversity

  • A

Without RS data (Ecology domain)

optional

  • B

R / Python Packages

  • Name of packages, link to official pages
  • Short note on usage & documentation (optional)

Code Cells

optional

Template code cells or GitHub Gist links.

Assessment table

CategoryCriteriaAssessment
OutcomeObjectiveautomatically filled
 Estimand 
 Validity 
Data compatibilityType 
 Required TS length 
 Handles few samples 
 Handles huge datasets (n) 
 Handles missing data 
 RS-data proven 
AssumptionsFunctional form 
 No unobserved confounders 
 No interference 
 Well-defined treatments 
 Common support (positivity) 
 Causal Markov Condition 
 Faithfulness 
 IDD 
 Model specific assumption 
Model propertiesRequires explicit processes 
 Exposure type 
 Number of variables 
 Handles lag effects 
 Propagates uncertainty 
 Parametric nature 
PackagesLanguage 
 Usage 

References