Synthetic controls

Joaquim Estopinan | June 23, 2025

Table of Contents

  1. Description & principle
  2. Reference articles
  3. Packages
  4. Assessment table

Description & principle

The synthetic control (SC) method originates from the early 2000s, with its first introduction in the influential Abadie & Gardeazabal (2003) article. It consists in combining a selection of control sites to best mimick the treatment site’s counterfactual, based on the pre-intervention similarity of their respective outcome and covariates. It is an effect estimation method shifting the causal sufficiency assumption (no unobserved confounders) to the good pre-intervention fit condition, still assuming no time-varying unobserved confoundinfing after the intervention.

Major variants

The success of this method has also led to numerous variants. We can cite among others:

  • Robust SC from Amjad, Shah, & Shen (2018): Adds de-noising, uncertainty estimation and handles missing data
  • Augmented SC from Ben-Michael, Feller, & Rothstein (2020) (2022): Relaxes constraints on the synthetic control combination to improve pre-treatment fit and allows staggered adoption of treatment between various units
  • Sparse SC from Quistorff, Goldman, & Thorpe (2021): Helps pre-treatment variables selection and add regularization to meet big data context needs
  • Penalized SC from Abadie (2021): An adaptation of the SC method to deal with disaggregated data gathering varied treated units
  • Finally, a number of recent developement merge the SC method with other approaches:

Further online resources

Reference articles

Method

An updated review paper positioning the method by its original author: Abadie & L’Hour (2021)

Research applications

With RS data in Ecology / Biodiversity

Without RS data (Ecology domain)

Packages

Python

R

Assessment table

CategoryCriteriaAssessment
OutcomeObjectiveautomatically filled
 Estimand 
 Validity 
Data compatibilityType 
 Required TS length 
 Handles few samples 
 Handles huge datasets (n) 
 Handles missing data 
 RS-data proven 
AssumptionsFunctional form 
 No unobserved confounders 
 No interference 
 Well-defined treatments 
 Common support (positivity) 
 Causal Markov Condition 
 Faithfulness 
 IDD 
 Model specific assumption 
Model propertiesRequires explicit processes 
 Exposure type 
 Number of variables 
 Handles lag effects 
 Propagates uncertainty 
 Parametric nature 
PackagesLanguage 
 Usage 

References

  1. Abadie, A., & Gardeazabal, J. (2003). The Economic Costs of Conflict: A Case Study of the Basque Country. American Economic Review, 93, 113–132. https://doi.org/10.1257/000282803321455188
  2. Amjad, M., Shah, D., & Shen, D. (2018). Robust Synthetic Control. Journal of Machine Learning Research, 19, 1–51. http://jmlr.org/papers/v19/17-777.html
  3. Ben-Michael, E., Feller, A., & Rothstein, J. (2020). The Augmented Synthetic Control Method. arXiv. http://arxiv.org/abs/1811.04170
  4. Ben-Michael, E., Feller, A., & Rothstein, J. (2022). Synthetic Controls with Staggered Adoption. Journal of the Royal Statistical Society Series B: Statistical Methodology, 84, 351–381. https://doi.org/10.1111/rssb.12448
  5. Quistorff, B., Goldman, M., & Thorpe, J. (2021). Sparse Synthetic Controls: Unit-Level Counterfactuals from High-Dimensional Data.
  6. Abadie, A. (2021). Using Synthetic Controls: Feasibility, Data Requirements, and Methodological Aspects. Journal of Economic Literature, 59, 391–425. https://doi.org/10.1257/jel.20191450
  7. Xu, Y. (2016). Generalized Synthetic Control Method: Causal Inference with Interactive Fixed Effects Models [SSRN Scholarly Paper]. https://doi.org/10.2139/ssrn.2584200
  8. Arkhangelsky, D., Athey, S., Hirshberg, D. A., Imbens, G. W., & Wager, S. (2021). Synthetic Difference-in-Differences. The American Economic Review, 111, 4088–4118. https://www.jstor.org/stable/27086719
  9. Chernozhukov, V., Wüthrich, K., & Zhu, Y. (2021). An Exact and Robust Conformal Inference Method for Counterfactual and Synthetic Controls. Journal of the American Statistical Association, 116, 1849–1864. https://doi.org/10.1080/01621459.2021.1920957
  10. Imai, K., Kim, I. S., & Wang, E. H. (2023). Matching Methods for Causal Inference with Time-Series Cross-Sectional Data. American Journal of Political Science, 67, 587–605. https://doi.org/10.1111/ajps.12685
  11. Botosaru, I., & Ferman, B. (2019). On the Role of Covariates in the Synthetic Control Method. The Econometrics Journal, 22, 117–130. https://doi.org/10.1093/ectj/utz001
  12. Abadie, A., & L’Hour, J. (2021). A Penalized Synthetic Control Estimator for Disaggregated Data. Journal of the American Statistical Association, 116, 1817–1834. https://doi.org/10.1080/01621459.2021.1971535
  13. Fick, S. E., Nauman, T. W., Brungard, C. C., & Duniway, M. C. (2021). Evaluating Natural Experiments in Ecology: Using Synthetic Controls in Assessments of Remotely Sensed Land Treatments. Ecological Applications, 31, e02264. https://doi.org/10.1002/eap.2264
  14. Sharma, R., Jones, S., Robinson, D., & Gordon, A. (2023). Evaluating the Impact of Private Land Conservation with Synthetic Control Design. Conservation Biology, 37, e14150. https://doi.org/10.1111/cobi.14150
  15. Rana, P., & Miller, D. C. (2019). Explaining Long-Term Outcome Trajectories in Social–Ecological Systems. PLOS ONE, 14, e0215230. https://doi.org/10.1371/journal.pone.0215230
  16. West, T. A. P., Börner, J., Sills, E. O., & Kontoleon, A. (2020). Overstated Carbon Emission Reductions from Voluntary REDD+ Projects in the Brazilian Amazon. Proceedings of the National Academy of Sciences, 117, 24188–24194. https://doi.org/10.1073/pnas.2004334117
  17. Lépissier, A., & Mildenberger, M. (2021). Unilateral Climate Policies Can Substantially Reduce National Carbon Pollution. Climatic Change, 166, 31. https://doi.org/10.1007/s10584-021-03111-2
  18. Nakanishi, K., Yokomizo, H., Fukaya, K., Kadoya, T., Matsuzaki, S.-ichiro S., Nishihiro, J., Kohzu, A., & Hayashi, T. I. (2022). Inferring Causal Impacts of Extreme Water-Level Drawdowns on Lake Water Clarity Using Long-Term Monitoring Data. Science of The Total Environment, 838, 156088. https://doi.org/10.1016/j.scitotenv.2022.156088
  19. Kaiser, A., Dee, L., & Resasco, J. (2025). Synthetic Control Methods Enable Stronger Causal Inference Using Participatory Science Data in Cities. In Review. https://doi.org/10.21203/rs.3.rs-6213868/v1