Non-fingerprint models

Mrs. Young | July 17, 2025

Table of Contents

  1. Description & principle
  2. Reference articles
  3. Packages
  4. Assessment table

Description & principle

A clear, technical yet accessible explanation of the method, its core principle(s).

Major variants

optional

If the method has variants that seem important, either already widespread or promising and well documented.

Further online resources

References to useful online resources to get started, e.g. explanation blogs

Reference articles

Method

  • One or a few key academic references that introduce or formalize the method.

Research applications

With RS data in Ecology / Biodiversity

  • A

Without RS data (Ecology domain)

optional

  • B

Packages

Python

R

Code Cells

optional

Assessment table

CategoryCriteriaAssessment
OutcomeObjectiveEffect estimation, Detection
 EstimandOriented link, Maps & generalisations, Risk ratios, Others
 ValidityModerate confidence
Data compatibilityTypePanel data (many samples)
 Required TS length≥ 100, ≥ 10
 Handles few samplesYes ≤ 10
 Handles huge datasets (n)Most do
 Handles missing dataPartially
 RS-data provenYes
AssumptionsFunctional formLinear, Non-linear, Assumption-free
 No unobserved confoundersRequired
 No interferenceNot required
 Well-defined treatmentsRequired
 Common support (positivity)Desirable
 Causal Markov ConditionInapplicable
 FaithfulnessRecommended
 IDDRelaxes assumption
 Model specific assumptionNo specific
Model propertiesRequires explicit processesAgnostic
 Exposure typeContinuous / Time-varying, Binary
 Number of variablesMultivariate, Univariate
 Handles lag effectsPossible
 Propagates uncertaintyModel-specific tools
 Parametric natureParametric, Semi-parametric, Non-parametric
PackagesLanguageR, Python, Others
 UsageDomain-specific skills, Technical but well documented

References